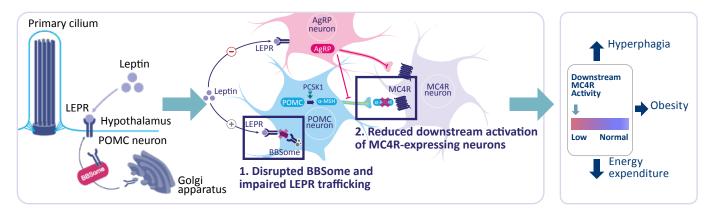

Bardet-Biedl syndrome

Bardet-Biedl syndrome (BBS) is a rare, autosomal disease resulting from genetic variants within the BBS family of genes.

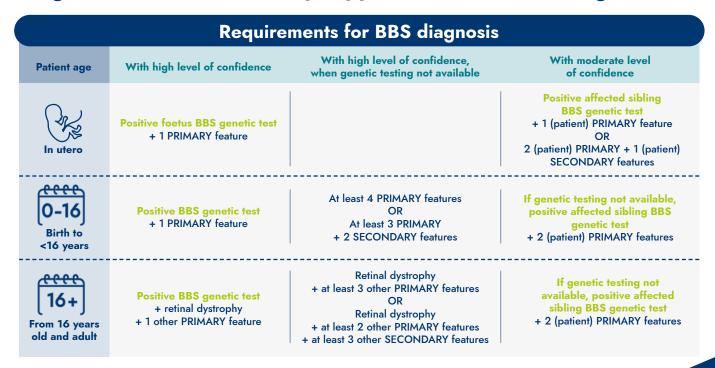
This disease presents with a variety of clinical features, some of which are present from birth, while others evolve over time. These features are attributed to impairments in the melanocortin-4 receptor (MC4R) pathway.¹

Prevalence: Prevalence estimates may increase as more healthcare providers become aware of the clinical features of BBS and genetically test to aid in clinical diagnosis³



26 genes and 4 modifier loci associated with BBS are involved in the MC4R pathway.⁵

Eight BBS proteins form a stable complex, the BBSome, which contributes to cilia development and function by trafficking intracellular proteins to ciliary membranes and potentially to other membrane compartments.⁶


Variants in BBS genes disrupt the BBSome, resulting in ciliary defects and impaired signalling of receptors that regulate body weight, such as LEPR.⁶⁻¹⁰

This disrupts LEPR signalling, reducing activation of MC4R-expressing neurons, and can lead to hyperphagia and early-onset obesity.⁶⁻¹⁰

Abbreviations: AgRP, agouti-related peptide; α-MSH, α-melanocyte-stimulating hormone; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; NPY, neuropeptide Y; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin.

The European Reference Networks (ERN) diagnostic criteria prioritise genetic testing and streamline clinical criteria for diagnosis of BBS, which may support more accurate diagnosis⁵

Clinical features relevant to age stratification⁵

Hyperphagia is recognised as an issue in most children and adolescents and routine monitoring, for example using the hyperphagia Dykens questionnaire, is recommended

Early-onset obesity, especially if retinal dystrophy is present, should prompt for BBS genetic testing

	In utero	Birth to <16	16+
		Early-onset obesity	
Jar		Early-onset retinal dystrophy	
Primary	Polydactyly		
	Kidney anomalies/dysfunction		
		Hydrometrocolpos	
≥ \		Hypogonadism	
Secondary		Micropenis	
00 /		Neurodevelopmental disability	
\		Anosmia/hyposmia	
	Situs inversus		

Genetic confirmation¹¹⁻¹³

A genetic diagnosis of BBS can make a significant difference to an individual's life by:

Improving access to appropriate care

Reducing the social stigma of obesity and providing coping strategies for managing stigmatisation

Empowering the individual and carers to understand the root cause of their disease and make informed decisions about their care

Allowing for preventive or prophylactic screening of associated conditions

References: 1. Forsythe E, et al. *Front Pediatr.* 2018;6:23. 2. Tsang SH, et al. *Advances in Experimental Medicine and Biology.* 2018:1085. 3. Suspitsin EN, Imyanitov EN. *Mol Syndromol.* 2016;7:62–71. 4. Forsythe E, et al. *Eur J Hum Genet.* 2013:21:8–13. 5. Dollfus H, et al. *Eur J Hum Genet.* 2024;32(11):1347–1360. 6. Guo DF and Rahmouni K. *Trends Endocrinol Metab.* 2011;22(7):286–293. 7. Seo S, et al. *Hum Mol Genet.* 2009;18(7):1323–1331. 8. Wang L, et al. *J Clin Invest.* 2021;131(8):146287. 9. Loos RJF and Yeo GSH. *Nat Rev Gens.* 2022;23:120–13. 10. Yazdi FT, et al. *Peer J.* 2015;3:e856; 11. Styne DM, et al. *J Clin Endocrinol Metab.* 2017;102(3):709–757. 12. August GP, et al. *J Clin Endocrinol Metab.* 2008;93(12):4576–4599. 13. Kleinendorst L, et al. *BMJ Case Rep.* 2017:bcr2017221067.

This information is provided by Rhythm Pharmaceuticals B.V. (EU_Medinfo@rhythmtx.com). Last updated September 2025.

© 2025. Rhythm Pharmaceuticals, Inc. All rights reserved. Rhythm and its logo is a registered trademark of Rhythm Pharmaceuticals, Inc. AT-NP-2200002 09/2025

